# Difference between revisions of "Journal Club Winter 2013"

(16 intermediate revisions by 2 users not shown) | |||

Line 1: | Line 1: | ||

− | This | + | This season we will be focusing on quantum information theory. Classical information theory is ubiquitous in science and mathematics with applications ranging from characterizing ensembles of particles to answering how many bits can be sent reliably over a noisy channel. It is even useful as an estimation technique for gauging the difficulty of a research problem. For instance, one may ask, how many bits are necessary to specify a quantum circuit acting on n bits(with bit flips Toffoli and Hadamard gates) and how does that compare to the number of bits required to specify a classical circuit(just bit flips and Tofolli gates)? This question already leads to a naive bound on the average quantum speed-up attainable over classical circuits, e.g. there isn't enough information in the specification of constant depth quantum circuits to characterize all reversible function on n-bits and so we conclude that there are deterministic functions that require more than constant quantum depth. Although this example is rather simple, it already gives the researcher some perspective about a very broad and difficult problem, that of finding quantum speed-ups. If classical information theory can quickly give us insight into the classical resources needed for a task, perhaps quantum information theory would be equally useful in giving us insight into the quantum resources needed for a quantum task? |

− | '''Place and Time:''' | + | '''Place and Time:''' Thursday at 2:45pm in the Cosman room(6C-442) or in cyberspace via Google Hangouts. |

==Schedule== | ==Schedule== | ||

{|border="1" | {|border="1" | ||

Line 8: | Line 8: | ||

!Date | !Date | ||

|- | |- | ||

− | |[http://arxiv.org/abs/quant-ph/ | + | |[http://arxiv.org/abs/quant-ph/9511030 Concentrating Partial Entanglement with Local Operations] and [http://quantum.cs.washington.edu/wiki/uploads/f/fd/ConcentratingPartialEntanglement.pdf lecture notes] |

− | |Kamil | + | |Kamil Michnicki |

− | |2/ | + | |2/21 |

|- | |- | ||

+ | |[http://arxiv.org/abs/quant-ph/0404076 Consequences and Limits of Nonlocal Strategies] | ||

+ | |Henry Yuen | ||

+ | |2/28 | ||

+ | |- | ||

+ | |Quantum [http://arxiv.org/abs/quant-ph/0703069 De Finetti Theorems] and [http://arxiv.org/abs/1210.6367 recent work] | ||

+ | |Aram Harrow | ||

+ | |3/7 | ||

+ | |- | ||

+ | |[http://arxiv.org/abs/1206.5236 Quantum Compiling] | ||

+ | |Vadym Kliuchnikov | ||

+ | |3/14 | ||

+ | |- | ||

+ | |[http://arxiv.org/abs/quant-ph/0512247 Quantum state merging] with [http://arxiv.org/abs/quant-ph/0606225 background] | ||

+ | |Cedric Yen-Yu Lin | ||

+ | |3/21 | ||

+ | |- | ||

+ | |[http://arxiv.org/abs/0809.3019 Post-selection technique for quantum channels with applications to quantum cryptography] | ||

+ | |Shelby Kimmel | ||

+ | |3/28 | ||

+ | |- | ||

+ | |[] | ||

+ | |???? | ||

+ | |4/4 | ||

+ | |- | ||

+ | |[] | ||

+ | |Isaac Crosson | ||

+ | |4/11 | ||

+ | |- | ||

+ | |[] | ||

| | | | ||

+ | |4/18 | ||

+ | |- | ||

+ | |[] | ||

| | | | ||

− | | | + | |4/25 |

− | |||

|} | |} | ||

Line 60: | Line 91: | ||

'''Wiki Page:''' [[User:Icrosson|Isaac Crosson]] | '''Wiki Page:''' [[User:Icrosson|Isaac Crosson]] | ||

− | '''Faculty Advisor:''' [http://www. | + | '''Faculty Advisor:''' [http://www.mit.edu/~aram/ Aram Harrow] |

## Latest revision as of 19:32, 28 March 2013

This season we will be focusing on quantum information theory. Classical information theory is ubiquitous in science and mathematics with applications ranging from characterizing ensembles of particles to answering how many bits can be sent reliably over a noisy channel. It is even useful as an estimation technique for gauging the difficulty of a research problem. For instance, one may ask, how many bits are necessary to specify a quantum circuit acting on n bits(with bit flips Toffoli and Hadamard gates) and how does that compare to the number of bits required to specify a classical circuit(just bit flips and Tofolli gates)? This question already leads to a naive bound on the average quantum speed-up attainable over classical circuits, e.g. there isn't enough information in the specification of constant depth quantum circuits to characterize all reversible function on n-bits and so we conclude that there are deterministic functions that require more than constant quantum depth. Although this example is rather simple, it already gives the researcher some perspective about a very broad and difficult problem, that of finding quantum speed-ups. If classical information theory can quickly give us insight into the classical resources needed for a task, perhaps quantum information theory would be equally useful in giving us insight into the quantum resources needed for a quantum task?

**Place and Time:** Thursday at 2:45pm in the Cosman room(6C-442) or in cyberspace via Google Hangouts.

## Schedule

Subject | Speaker | Date |
---|---|---|

Concentrating Partial Entanglement with Local Operations and lecture notes | Kamil Michnicki | 2/21 |

Consequences and Limits of Nonlocal Strategies | Henry Yuen | 2/28 |

Quantum De Finetti Theorems and recent work | Aram Harrow | 3/7 |

Quantum Compiling | Vadym Kliuchnikov | 3/14 |

Quantum state merging with background | Cedric Yen-Yu Lin | 3/21 |

Post-selection technique for quantum channels with applications to quantum cryptography | Shelby Kimmel | 3/28 |

[] | ???? | 4/4 |

[] | Isaac Crosson | 4/11 |

[] | 4/18 | |

[] | 4/25 |

## Papers

### General Background

From Classical to Quantum Shannon Theory - A thorough and up-to-date (2012) free textbook by Mark Wilde.

Video lectures by Thomas Cover on classical information theory.

Nielson and Chuang, Quantum Computing and Quantum Information: Part III

### Papers

**April 1996:** Mixed State Entanglement and Quantum Error Correction - C. Bennett, D. DiVincenzo, J. Smolin, W. Wootters

**Sept 2003:** Secure key from bound entanglement K. Horodecki, M. Horodecki, P. Horodecki, J. Oppenheim

**July 2004:** Aspects of generic entanglement - P. Hayden, D. Leung, A. Winter

**Dec 2005:** Quantum state merging and negative information - M. Horodecki, J. Oppenheim, A. Winter

**June 2006:** The mother of all protocols: Restructuring quantum information's family tree - A. Abeyesinghe, I. Devetak, P. Hayden, A. Winter

**March 2007:** Symmetry implies independence - R. Renner

**Aug 2008:** The operational meaning of min- and max-entropy - R. Koenig, R. Renner, C. Schaffner

**Sept 2008:** Post-selection technique for quantum channels with applications to quantum cryptography - M. Christandl, R. Koenig, R. Renner

**April 2009:** A Generalization of Quantum Stein's Lemma - F. Brandao, M. Plenio

**Dec 2009:** Quantum Reverse Shannon Theorem - C. Bennett, I. Devetak, A. Harrow, P. Shor, A. Winter

**March 2010:** Hastings' additivity counterexample via Dvoretzky's theorem - G. Aubrun, S. Szarek, E. Werner

**March 2010:** Weak Decoupling Duality and Quantum Identification - P. Hayden, A. Winter

**Oct 2010:** From Low-Distortion Norm Embeddings to Explicit Uncertainty Relations and Efficient Information Locking - O. Fawzi, P. Hayden, P. Sen

## Organizers

**Organizer:** Kamil Michnicki

**Wiki Page:** Isaac Crosson

**Faculty Advisor:** Aram Harrow