Adiabatic Optimization, Path-Integrals, and Stationary Phase

- Understand the importance of Hamming neighborhood symmetry for QAO success
- Draw connections with a classical random walk
 MAXSAT algorithm based on an efficient Fourier transform

QAO and Time Evolution

Time dependent Hamiltonian $H(t) = H_f + \Gamma(t) H_0$

$$\bullet \ H_0 = -\sum_{i=1}^n X_i$$

$$\bullet H_f = \sum_{z \in \{0,1\}^n} f(z) \mid z \rangle \langle z \mid$$

•
$$\Gamma(0) = \infty$$
, $\Gamma(1) = 0$

Infinitesimal Time Evolution $\hat{T}(t) = \exp \{-i \Delta t H(t)\}$

- Imaginary time: $\tau = i t$
- Discretize: $\tau_k = k * \Delta \tau$
- Finite Interval: $\hat{T} = \prod_k \exp \{\Delta \tau H(\tau_k)\}$
- Trotterize: $\hat{T}(\tau) = \prod_k \exp \{\Delta \tau H_f\} \exp \{\Delta \tau \Gamma(\tau_k) H_0\}$

Off-Diagonal Terms and Hamming Neighborhoods

Hamming metric: d(z, z'), $z, z' \in \Omega = \{0, 1\}^n$

Hamming Spheres: $S^r(z) = \{z' \in \Omega : d(z, z') = r\}$

$$\exp \left\{ \Delta \tau \, H_0 \right\} \quad \left| \, z \right\rangle \, = \left\{ I \, - \Delta \tau \, \sum_i X_i \right\} \quad \left| \, z \right\rangle \, = \quad \left| \, z \right\rangle \, - \Delta \tau \, \sum_{z' \in S^1(z)} \quad \left| \, z' \right\rangle$$

Infinitesimal Time Evolution on a General State

$$\exp\left\{\Delta\tau\,H_f\right\}\ \left|\,\psi\right\rangle = \exp\left\{\Delta\tau\,H_f\right\} \sum_{z\in\Omega}A_z\ \left|\,z\right\rangle \ = \sum_{z\in\Omega}A_z\,e^{\beta\,f(z)}\ \left|\,z\right\rangle$$

$$\langle z \mid \exp \{ \Delta \tau \Gamma H_0 \} \exp \{ \Delta \tau H_f \} \mid \psi \rangle = A_z e^{\Delta \tau f(z)} \{ 1 - \Delta \tau \Gamma \sum_{z' \in S^1(z)} A_{z'} \}$$

Average amplitude on a sphere: $\langle A \rangle_{S^1(z)}$

Finite Time Intervals

Let $A_z(k)$ be the amplitude of $|z\rangle$ after k steps.

$$A_{z}(k) = A_{z}(0) e^{k \Delta \tau f(z)} \prod_{k=0}^{1/\Delta \tau} \left\{ 1 - \Delta \tau \Gamma(\tau_{k}) \langle A(k) \rangle_{S^{1}(z)} \right\}$$

$$= A_z(0) e^{k \Delta \tau f(z)} \left\{ 1 - \Delta \tau \sum_{k=0}^{1/\Delta \tau} \Gamma(\tau_k) \langle A(k) \rangle_{S^1(z)} + O(\Delta \tau^2) \right\}$$

Terms $S^r(z)$ for $r \ge 2$ seem to require maintaining the Trotter approximation to $O(\Delta \tau^k)!$

Efficiently compute neighborhood averages?

Directed Plateau Search for MAX-k-SAT. Sutton et al, SOCS-2010

"...we develop a surrogate plateau "gradient" function using a Walsh transform of the objective function. This function gives the mean value of the objective function over localized volumes of the search space."

- Fourier basis: $\psi_i(x) = (-1)^{\langle i, x \rangle}$
- Hadamard Transform: $W_{ij} = \frac{1}{2^n} \psi_i(j)$
- Represent any function : w = W f, $f = \sum w_i \psi_i$

Transform can be computed efficiently for SAT!

Efficient Fourier Transform for SAT

Ex:
$$f(x) = x_0 \lor x_1 \lor \neg x_2 = \begin{cases} 0 & \text{if } x_0 = 1, \ x_1 = 0, \ x_2 = 1 \\ 1 & \text{otherwise} \end{cases}$$

- Vector representation: $f = (1 \ 1 \ 1 \ 1 \ 0 \ 1 \ 1 \ 1)$
- Fourier coefficients are sums of ± 1 with a single term zero-ed out!

Define neg(f) an *n*-bit string with 1s corresponding to negated bits of f

$$w_j = \begin{cases} \frac{2^{n}-1}{2^n} & j=0\\ -\frac{1}{2^n} \psi_j(\operatorname{neg}(f)) & j \neq 0 \end{cases}$$

For formulas with C clauses of k literals, w is sparse and computing it takes time $O(2^k C)$.

Averaging over Hamming Spheres

Define sphere matrices:
$$S_{xy}^r = \begin{cases} 1 & d(x, y) = r \\ 0 & \text{otherwise} \end{cases}$$

Walsh functions are eigenvectors: $S^r \psi_i = \gamma_i^r \psi_i$

$$g^{r}(x)$$
 = average of all $t_{r} = \sum_{u=0}^{r} {n \choose u}$ states within r of x :

$$g^{r}(x) = \frac{1}{t_r} \sum_{u=0}^{r} \sum_{y \in S^{u}(x)} f(y)$$

$$=\frac{1}{t_r}\sum_{n=0}^r S^r f(x)$$

$$= \frac{1}{t_r} \sum_{u=0}^r \sum_i \gamma_i^r w_i \psi_i(x)$$

Which can be computed in polynomial time!

Plateau Search

Use g to escape plateaus where f is constant

• Even when f(x) = f(y) we may have $g''(x) \neq g''(y)$

