
Introduction

In this presentation, we will:
Review classical complexity classes
Introduce QMA (the quantum analogue of NP )
Show that the local Hamiltonians problem is QMA-complete
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Problems and Languages

We will only consider decision problems (where the output is in
{0, 1})
This can be formulated as testing if a string x ∈ {0, 1}∗ is in
some language L ⊆ {0, 1}∗ which describes the problem we are
considering
Strings x for which the output is 0 are called no-instances and
strings for which the output is 1 are called yes-instances
We’ll assume we’re using a RAM machine; this is equivalent to
using a Turing machine up to polynomial factors
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Deterministic complexity classes I

P denotes the class of all decision problems can be solved in
deterministic polynomial-time

NP is the class of problems for which yes-instances can be
verified efficiently by a deterministic algorithm

Definition
L ∈ NP if there exists a deterministic polynomial-time algorithm A
and a polynomial p(n) such that
x ∈ L⇔ ∃w |w | ≤ p(n) ∧ A(x ,w) = 1
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Deterministic complexity classes II

One can also think of NP in terms of the game where Arthur
and Merlin are given an input x and Arthur must decide if
x ∈ L

Merlin has unlimited computational resources and must send a
witness w to Arthur; his goal is to get Arthur to conclude that
x ∈ L
Arthur runs a polynomial-time computation on x ,w

If x ∈ L, we require that it is possible for Merlin to convince
Arthur that this is that case by sending some w
If x 6∈ L, we require that — no matter what w Merlin provides
to Arthur — he cannot trick Arthur into concluding that x ∈ L
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Reductions

Reductions allow us to compare the hardness of different
problems

Definition
L1 is Karp-reducible to L2 (denoted L1 ≤P L2) if there exists a
deterministic polynomial-time algorithm A such that
x ∈ L1 ⇔ A(x) ∈ L2

We’ll only deal with Karp-reductions in this talk, so from now
on we’ll just refer to these as reductions

Definition
L is NP-hard if every language in NP is reducible to L

Definition
L is NP-complete if L ∈ NP and it is NP-hard
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The Cook-Levin Theorem

Theorem (Cook-Levin)

SAT is NP-complete

Many important problems such as SAT, independent set,
subset sum, etc. are NP-complete
One can reduce SAT to k-SAT when k ≥ 3 so k-SAT is also
NP-complete
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Randomized complexity classes I

BPP denotes the class of all problems can be solved in
bounded-error probabilistic polynomial-time

Definition
L ∈ BPP if there exists a randomized polynomial-time algorithm A
such that

x ∈ L⇒ Pr(A(x) = 1) ≥ 2/3

x 6∈ L⇒ Pr(A(x) = 1) ≤ 1/3
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Randomized complexity classes II

MA is the class of problems for which yes-instances can be
verified efficiently by a randomized algorithm

Definition
L ∈MA if there exists a randomized polynomial-time algorithm A
and a polynomial p(n) such that

x ∈ L⇒ ∃w |w | ≤ p(n) ∧ Pr(A(x ,w) = 1) ≥ 2/3

x 6∈ L⇒ ∀w |w | ≤ p(n) ∧ Pr(A(x ,w) = 1) ≤ 1/3
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Randomized complexity classes III

Similarly to NP , we can think of MA in terms a game where
Merlin sends a witness to Arthur
The only difference is that now we only require that Arthur
gets the right answer with bounded-error

If x ∈ L, we require that Merlin can send some witness w
which will convince Arthur that x ∈ L with probability at least
2/3
If x 6∈ L, we require that Merlin cannot trick Arthur into
concluding that x ∈ L with probability more than 1/3
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Quantum complexity classes I

BQP denotes the class of all problems which can be solved in
bounded-error quantum polynomial-time

Definition
L ∈ BQP if there exists a quantum polynomial-time algorithm A
such that

x ∈ L⇒ Pr(A(x) = 1) ≥ 2/3

x 6∈ L⇒ Pr(A(x) = 1) ≤ 1/3
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Quantum complexity classes II

QMA is the class of problems for which yes-instances can be
verified efficiently by a quantum algorithm

Definition
L ∈ QMA if there exists a quantum polynomial-time algorithm A
and a polynomial p(n) such that

x ∈ L⇒ ∃ |w〉 ∈ C2p(n)
Pr(A(x , |w〉) = 1) ≥ 2/3

x 6∈ L⇒ ∀ |w〉 ∈ C2p(n)
Pr(A(x , |w〉) = 1) ≤ 1/3

Similarly to MA , we can think of QMA in terms a game
where Merlin sends a witness to Arthur

The only difference is that the witness is now a quantum state
|w〉
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The k-local Hamiltonians problem

Given: classical descriptions of r positive-semidefinite k-local
Hamiltonians Hi of norm at most 1 and two positive real
numbers a and b such that b − a ≥ 1/poly(n)

Goal: determine if the smallest eigenvalue of H =
∑

i Hi less
than a or if all eigenvalues are greater than b
All inputs are specified to poly(n) bits of precision
We’ll call this problem k-HAM from now on
It’s worth noting that 3-SAT can be reduced to 3-HAM by
creating a 3-local projector for each clause in the 3-SAT
formula which introduces a penalty whenever that clause is not
satisfied
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QMA-completeness of 5-HAM

We will now show Kitaev’s proof that 5-HAM is QMA
-complete
There are two steps. We must show that

5-HAM ∈ QMA and
5-HAM is QMA-hard

The first is fairly easy while the second is more involved
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k-HAM ∈ QMA I

Since k is constant, we can compute each spectral
decomposition Hi =

∑
j w

i
j

∣∣∣αi
j

〉〈
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j

∣∣∣ in constant time

Moreover, each state
∣∣∣αi

j

〉
has support only on k qubits so it

can be prepared by some unitary U i
j in constant time

This implies that we can control by this state by applying U i
j
†

so that we can implement the operator defined by
Ti

∣∣∣αi
j

〉
|0〉 =
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〉(√
w i

j |0〉+
√

1− w i
j |1〉

)
in poly(r , n)

time

Consider any state |η〉 |0〉 and suppose we apply Ti to this
state and then measure the second register in the
computational basis

Using the Schmidt decomposition, one can show that this
probability is 1− 〈η|Hi |η〉
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k-HAM ∈ QMA II

The verification procedure consists of choosing an i ∈ [r ]
uniformly at random and then applying the above procedure;
the probability of observing 1 is 1− 〈η|H |η〉 /r
If H is a yes-instance and |η〉 is the ground state then
1− 〈η|H |η〉 /r ≥ 1− a/r

If H is a no-instance then 1− 〈η|H |η〉 /r ≤ 1− b/r
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Proof of the Cook-Levin Theorem

The proof that 5-HAM is QMA-hard follows the proof of the
Cook-Levin theorem which we will now review
For a fixed input size n, any Turing machine that runs in
poly(n) time can be simulated by a boolean circuit of size
poly(n)

By constructing such a circuit for the verifier for a NP
problem, we can show that CIRCUIT-SAT is NP-hard
It’s clear that CIRCUIT-SAT is in NP so this shows it is NP
-complete
Since we can also reduce CIRCUIT-SAT to 3-SAT, it follows
that 3-SAT is also NP-complete
To prove that 5-HAM is QMA-hard, we will construct a set of
5-local Hamiltonians which simulate the quantum circuit that
serves as the verifier
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5-HAM is QMA-hard I

Consider L ∈ QMA; our goal is to reduce L to 5-HAM

We know that there exists a quantum circuit Q = UT · · ·U1 of
size T = poly(n) which takes as input |x〉 |ξ〉 and outputs 1 if
|ξ〉 is a witness that x ∈ L; each Ui is a two-qubit gate

We’ll start by reducing L to O(log(n))-HAM and then show
how to make the resulting Hamiltonian 5-local

Consider a state of the form 1√
T+1

∑T
t=0 Ut · · ·U1 |x〉 |ξ〉; we

will design a Hamiltonian with this as the ground state

The term Hin =
∑

i Π¬xi
i ⊗ |0〉 〈0| (where Πb

i is the projector
onto the states where the i th qubit is equal to b) creates an
energy penalty whenever the input state is not |x〉
The term Hout = Π0

1 ⊗ |T 〉 〈T | adds an energy penalty
whenever the output is not 1 (i.e. when the computation did
not accept)
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5-HAM is QMA-hard II
The term

Hprop(t) =
1
2

(I ⊗ |t〉 〈t| − Ut ⊗ |t〉 〈t − 1|

+ I ⊗ |t − 1〉 〈t − 1| − U†t ⊗ |t − 1〉 〈t|
)

Adds a penalty unless the state at time t was obtained from
the state a time t − 1 by Ut

Let Hprop =
∑T

t=0 Hprop(t) and H = Hin + Hout + Hprop

At this point, there is one problem left which is that H is
O(log n)-local
We can make it 5-local by using a unary representation instead
of a binary representation for the clock register |t〉
The value 5 comes from using two qubit unitaries in the
computation register and three qubit projectors in the clock
register
Note that formalizing the above proof sketch is non-trivial!
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