Introduction

In this presentation, we will follow arXiv:quant-ph/0210077v1 by Aharnov and Naveh. We will:

- Review classical complexity classes
- Introduce QMA (the quantum analogue of NP)
- Show that the 5-local Hamiltonians problem is QMA-complete

Problems and Languages

- We will only consider decision problems (where the output is in $\{0,1\}$)
- This can be formulated as testing if a string $x \in\{0,1\}^{*}$ is in some language $L \subseteq\{0,1\}^{*}$ which describes the problem we are considering
- Strings x for which the output is 0 are called no-instances and strings for which the output is 1 are called yes-instances
- We'll assume we're using a RAM machine; this is equivalent to using a Turing machine up to polynomial factors

Deterministic complexity classes I

- \mathbf{P} denotes the class of all decision problems can be solved in deterministic polynomial-time
- NP is the class of problems for which yes-instances can be verified efficiently by a deterministic algorithm

Definition

$L \in$ NP if there exists a deterministic polynomial-time algorithm A and a polynomial $p(n)$ such that
$x \in L \Leftrightarrow \exists w|w| \leq p(n) \wedge A(x, w)=1$

Deterministic complexity classes II

- One can also think of NP in terms of the game where Arthur and Merlin are given an input x and Arthur must decide if $x \in L$
- Merlin has unlimited computational resources and must send a witness w to Arthur; his goal is to get Arthur to conclude that $x \in L$
- Arthur runs a polynomial-time computation on x, w
- If $x \in L$, we require that it is possible for Merlin to convince Arthur that this is that case by sending some w
- If $x \notin L$, we require that - no matter what w Merlin provides to Arthur - he cannot trick Arthur into concluding that $x \in L$

Reductions

- Reductions allow us to compare the hardness of different problems

Definition

L_{1} is Karp-reducible to L_{2} (denoted $L_{1} \leq_{P} L_{2}$) if there exists a deterministic polynomial-time algorithm A such that $x \in L_{1} \Leftrightarrow A(x) \in L_{2}$

- We'll only deal with Karp-reductions in this talk, so from now on we'll just refer to these as reductions

Definition

L is NP-hard if every language in NP is reducible to L

Definition

L is NP-complete if $L \in$ NP and it is NP-hard

Theorem (Cook-Levin)

SAT is NP-complete

- Many important problems such as SAT, independent set, subset sum, etc. are NP-complete
- One can reduce SAT to k-SAT when $k \geq 3$ so k-SAT is also NP-complete

Randomized complexity classes I

- BPP denotes the class of all problems can be solved in bounded-error probabilistic polynomial-time

Definition

$L \in$ BPP if there exists a randomized polynomial-time algorithm A such that

- $x \in L \Rightarrow \operatorname{Pr}(A(x)=1) \geq 2 / 3$
- $x \notin L \Rightarrow \operatorname{Pr}(A(x)=1) \leq 1 / 3$

Randomized complexity classes II

- MA is the class of problems for which yes-instances can be verified efficiently by a randomized algorithm

Definition

$L \in$ MA if there exists a randomized polynomial-time algorithm A and a polynomial $p(n)$ such that

- $x \in L \Rightarrow \exists w|w| \leq p(n) \wedge \operatorname{Pr}(A(x, w)=1) \geq 2 / 3$
- $x \notin L \Rightarrow \forall w|w| \leq p(n) \wedge \operatorname{Pr}(A(x, w)=1) \leq 1 / 3$

Randomized complexity classes III

- Similarly to NP, we can think of MA in terms a game where Merlin sends a witness to Arthur
- The only difference is that now we only require that Arthur gets the right answer with bounded-error
- If $x \in L$, we require that Merlin can send some witness w which will convince Arthur that $x \in L$ with probability at least 2/3
- If $x \notin L$, we require that Merlin cannot trick Arthur into concluding that $x \in L$ with probability more than $1 / 3$

Quantum complexity classes I

- BQP denotes the class of all problems which can be solved in bounded-error quantum polynomial-time

Definition

$L \in B Q P$ if there exists a quantum polynomial-time algorithm A such that

- $x \in L \Rightarrow \operatorname{Pr}(A(x)=1) \geq 2 / 3$
- $x \notin L \Rightarrow \operatorname{Pr}(A(x)=1) \leq 1 / 3$

Quantum complexity classes II

- QMA is the class of problems for which yes-instances can be verified efficiently by a quantum algorithm

Definition

$L \in$ QMA if there exists a quantum polynomial-time algorithm A and a polynomial $p(n)$ such that

- $x \in L \Rightarrow \exists|w\rangle \in \mathbb{C}^{2^{p(n)}} \operatorname{Pr}(A(x,|w\rangle)=1) \geq 2 / 3$
- $x \notin L \Rightarrow \forall|w\rangle \in \mathbb{C}^{2^{p(n)}} \operatorname{Pr}(A(x,|w\rangle)=1) \leq 1 / 3$
- Similarly to MA, we can think of QMA in terms a game where Merlin sends a witness to Arthur
- The only difference is that the witness is now a quantum state $|w\rangle$

The k-local Hamiltonians problem

- Given: classical descriptions of r positive-semidefinite k-local Hamiltonians H_{i} of norm at most 1 and two positive real numbers a and b such that $b-a \geq 1 / \operatorname{poly}(n)$
- Goal: determine if the smallest eigenvalue of $H=\sum_{i} H_{i}$ less than a or if all eigenvalues are greater than b
- All inputs are specified to poly (n) bits of precision
- We'll call this problem k-HAM from now on
- It's worth noting that 3-SAT can be reduced to 3-HAM by creating a 3 -local projector for each clause in the 3-SAT formula which introduces a penalty whenever that clause is not satisfied

QMA-completeness of 5-HAM

- We will now show Kitaev's proof that 5-HAM is QMA -complete
- There are two steps. We must show that
- 5-HAM \in QMA and
- 5-HAM is QMA-hard
- The first is fairly easy while the second is more involved

$k-H A M \in$ QMA

- Since k is constant, we can compute each spectral decomposition $H_{i}=\sum_{j} w_{j}^{i}\left|\alpha_{j}^{i}\right\rangle\left\langle\alpha_{j}^{i}\right|$ in constant time
- Moreover, each state $\left|\alpha_{j}^{i}\right\rangle$ has support only on k qubits so it can be prepared by some unitary U_{j}^{i} in constant time
- This implies that we can control by this state by applying $U_{j}^{i \dagger}$ so that we can implement the operator defined by $T_{i}\left|\alpha_{j}^{i}\right\rangle|0\rangle=\left|\alpha_{j}^{i}\right\rangle\left(\sqrt{w_{j}^{i}}|0\rangle+\sqrt{1-w_{j}^{i}}|1\rangle\right)$ in $\operatorname{poly}(r, n)$ time
- Consider any state $|\eta\rangle|0\rangle$ and suppose we apply T_{i} to this state and then measure the second register in the computational basis
- Using the Schmidt decomposition, one can show that this probability is $1-\langle\eta| H_{i}|\eta\rangle$

$k-H A M \in$ QMA II

- The verification procedure consists of choosing an $i \in[r]$ uniformly at random and then applying the above procedure; the probability of observing 1 is $1-\langle\eta| H|\eta\rangle / r$
- If H is a yes-instance and $|\eta\rangle$ is the ground state then $1-\langle\eta| H|\eta\rangle / r \geq 1-a / r$
- If H is a no-instance then $1-\langle\eta| H|\eta\rangle / r \leq 1-b / r$
- The proof that 5-HAM is QMA-hard follows the proof of the Cook-Levin theorem which we will now review
- For a fixed input size n, any Turing machine that runs in poly (n) time can be simulated by a boolean circuit of size poly (n)
- By constructing such a circuit for the verifier for a NP problem, we can show that CIRCUIT-SAT is NP-hard
- It's clear that CIRCUIT-SAT is in NP so this shows it is NP -complete
- Since we can also reduce CIRCUIT-SAT to 3-SAT, it follows that 3-SAT is also NP-complete
- To prove that 5-HAM is QMA-hard, we will construct a set of 5-local Hamiltonians which simulate the quantum circuit that serves as the verifier
- Consider $L \in$ QMA; our goal is to reduce L to 5-HAM
- We know that there exists a quantum circuit $Q=U_{T} \cdots U_{1}$ of size $T=\operatorname{poly}(n)$ which takes as input $|x\rangle|\xi\rangle$ and outputs 1 if $|\xi\rangle$ is a witness that $x \in L$; each U_{i} is a two-qubit gate
- We'll start by reducing L to $O(\log (n))$-HAM and then show how to make the resulting Hamiltonian 5-local
- Consider a state of the form $\frac{1}{\sqrt{T+1}} \sum_{t=0}^{T} U_{t} \cdots U_{1}|x\rangle|\xi\rangle$; we will design a Hamiltonian with this as the ground state
- The term $H_{i n}=\sum_{i} \Pi_{i}^{\neg x_{i}} \otimes|0\rangle\langle 0|$ (where Π_{i}^{b} is the projector onto the states where the $i^{\text {th }}$ qubit is equal to b) creates an energy penalty whenever the input state is not $|x\rangle$
- The term $H_{\text {out }}=\Pi_{1}^{0} \otimes|T\rangle\langle T|$ adds an energy penalty whenever the output is not 1 (i.e. when the computation did not accept)

5-HAM is QMA-hard II

- The term

$$
\begin{aligned}
H_{\text {prop }}(t) & =\frac{1}{2}\left(I \otimes|t\rangle\langle t|-U_{t} \otimes|t\rangle\langle t-1|\right. \\
& \left.+I \otimes|t-1\rangle\langle t-1|-U_{t}^{\dagger} \otimes|t-1\rangle\langle t|\right)
\end{aligned}
$$

Adds a penalty unless the state at time t was obtained from the state a time $t-1$ by U_{t}

- Let $H_{\text {prop }}=\sum_{t=0}^{T} H_{\text {prop }}(t)$ and $H=H_{\text {in }}+H_{\text {out }}+H_{\text {prop }}$
- At this point, there is one problem left which is that H is $O(\log n)$-local
- We can make it 5-local by using a unary representation instead of a binary representation for the clock register $|t\rangle$
- The value 5 comes from using two qubit unitaries in the computation register and three qubit projectors in the clock register
- Note that formalizing the above proof sketch is non-trivial!

